Contact us for product
availability and pricing.

Although data quality is a long-standing and enduring problem, it has recently received a resurgence of attention due to the fast proliferation of data analytics, machine learning, and decision-support applications built upon the wide-scale availability and accessibility of (big) data. The success of such applications heavily relies on not only the quantity, but also the quality of data. Data curation, which may include annotation, cleaning, transformation, integration, etc., is a critical step to provide adequate assurances on the quality of analytics and machine learning results. Such data preparation activities are recognised as time and resource intensive for data scientists as data often comes with a number of challenges that need to be tackled before it can be used in practice. Data re-purposing and the resulting distance between design and use intentions of the data, is a fundamental issue behind many of these …