Empowering Discovery,
Enhancing Knowledge
Latest News
Positive Experience Reflection for Agents in Interactive Text Environments
Intelligent agents designed for interactive environments face significant challenges in text-based games, a domain that demands complex reasoning and adaptability. While agents based on large language models (LLMs) using self-reflection have shown promise, they struggle when initially successful and exhibit reduced effectiveness when using smaller LLMs. We introduce Sweet&Sour, a novel approach that addresses these limitations in existing reflection methods by incorporating positive experiences and managed memory to enrich the context available to the agent at decision time. Our comprehensive analysis spans both closed- and open-source LLMs and demonstrates the effectiveness of Sweet&Sour in improving agent performance, particularly in scenarios where previous approaches fall short.
Context-Informed Machine Translation of Manga using Multimodal Large Language Models
Due to the significant time and effort required for handcrafting translations, most manga never leave the domestic Japanese market. Automatic manga translation is a promising potential solution. However, it is a budding and underdeveloped field and presents complexities even greater than those found in standard translation due to the need to effectively incorporate visual elements into the translation process to resolve ambiguities. In this work, we investigate to what extent multimodal large language models (LLMs) can provide effective manga translation, thereby assisting manga authors and publishers in reaching wider audiences. Specifically, we propose a methodology that leverages the vision component of multimodal LLMs to improve translation quality and evaluate the impact of translation unit size, context length, and propose a token efficient approach for manga translation. Moreover, we introduce a new evaluation dataset — the first parallel Japanese-Polish manga translation dataset — as part of a benchmark to be used in future research. Finally, we contribute an open-source software suite, enabling others to benchmark LLMs for manga translation. Our findings demonstrate that our proposed methods achieve state-of-the-art results for Japanese-English translation and set a new standard for Japanese-Polish.
XCrowd: Combining Explainability and Crowdsourcing to Diagnose Models in Relation Extraction
Relation extraction methods are currently dominated by deep neural models, which capture complex statistical patterns while being brittle and vulnerable to perturbations in data and distribution. Explainability techniques offer a means for understanding such vulnerabilities, and thus represent an opportunity to mitigate future errors; yet, existing methods are limited to describing what the model ‘knows’, while totally failing at explaining what the model does not know. This paper presents a new method for diagnosing model predictions and detecting potential inaccuracies. Our approach involves breaking down the problem into two components: (i) determining the necessary knowledge the model should possess for accurate prediction, through human annotations, and (ii) assessing the actual knowledge possessed by the model, using explainable AI methods (XAI). We apply our method to several relation extraction …
Nothing Comes Without Its World–Practical Challenges of Aligning LLMs to Situated Human Values through RLHF
Work on value alignment aims to ensure that human values are respected by AI systems. However, existing approaches tend to rely on universal framings of human values that obscure the question of which values the systems should capture and align with, given the variety of operational situations. This often results in AI systems that privilege only a selected few while perpetuating problematic norms grounded on biases, ultimately causing equity and justice issues. In this perspective paper, we unpack the limitations of predominant alignment practices of reinforcement learning from human feedback (RLHF) for LLMs through the lens of situated values. We build on feminist epistemology to argue that at the design-time, RLHF has problems with representation in the subjects providing feedback and implicitness in the conceptualization of values and situations of real-world users while lacking system adaptation to real user situations at the use time. To address these shortcomings, we propose three research directions: 1) situated annotation to capture information about the crowdworker’s and user’s values and judgments in relation to specific situations at both the design and use-time, 2) expressive instruction to encode plural values for instructing LLMs systems at design-time, and 3) reflexive adaptation to leverage situational knowledge for system adaption at use-time. We conclude by reflecting on the practical challenges of pursuing these research directions and situated value alignment of AI more broadly.
InLighta Patents
Academic Papers and Presentations by Dr. Jenny Yang

Explore Dr. Jenny Yang’s related academic papers, conference presentations, and more.